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A foam ablation model for lost foam casting of aluminum
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Abstract

A model is developed for heat transfer, polymer vaporization, and gas diffusion at the interface between the advanc-
ing liquid metal and the receding foam pattern during mold filling in lost foam casting of aluminum. Most of the pattern
interior decomposes by ablation, but the boundary cells decompose by a collapse mechanism, which creates an undercut
in the pattern next to the coating. By regulating how much of the pattern coating is exposed to gas diffusion, the under-
cut controls the overall filling speed of the metal through the mold. Computed values for the foam decomposition
energy from this model compare very well with experimental data on foam pyrolysis, and predicted filling speeds are
consistent with observations in published experiments. In addition, the model explains several unusual observations
about mold filling that until now have not been understood.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Lost foam casting

First conceived by Maytag engineer Smith [1] in
1964, lost foam casting involves the novel use of an
expendable pattern made of molded polymer foam.
Sometimes patterns are glued together from two or more
separately molded pieces when internal passages do not
allow them to be molded as one. After the pattern is
assembled, it is dipped in a water-based refractory slurry
and allowed to dry. The coated pattern is then placed in-
side a steel flask, where it is surrounded with loose, dry
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sand. After the sand is compacted by vibration, liquid
metal is poured directly into the pattern, which decom-
poses ahead of the advancing liquid metal as gas and li-
quid products from the receding foam diffuse through
the coating and into the sand. The liquid metal eventu-
ally replaces all the volume occupied by the foam pat-
tern before it solidifies [2].

As a process for making complex parts in high vol-
ume, lost foam casting has several important advanta-
ges. First, the molds for the foam patterns are
relatively inexpensive and easy to make. Castings are
free from parting lines, and draft angles can be reduced
or even eliminated. Internal passages may be cast with-
out cores, and many design features, such as pump hous-
ings and oil holes, can be cast directly into the part. Lost
foam casting is also kinder to the environment than tra-
ditional green sand casting because the sand can be
cleaned and reused. Although lost foam casting is used
ed.
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Nomenclature

a coefficient in Arrhenius expression for
vaporization rate, kg/s m2

cA specific heat of the air in the decomposition
layer, J/kg K

cL specific heat of the polymer liquid in the
decomposition layer, J/kg K

cS specific heat of the solid polymer in the
foam, J/kg K

cV specific heat of the polymer vapor in the
decomposition layer, J/kg K

d pattern thickness, m
dC coating thickness, m
E activation energy in Arrhenius expression

for vaporization rate, J/mole
HD heat of degradation per unit mass for the

polymer in the foam, J/kg
HM latent heat of fusion per unit mass for the

polymer in the foam, J/kg
HV heat of vaporization per unit mass for the

polymer in the foam, J/kg
kD bulk thermal conductivity of the liquid

foam, W/m K
K0 zeroth-order modified Bessel function of the

second kind
lC length of exposed coating open to gas diffu-

sion, m
lD thickness of the decomposition layer, m
mD normal mass flux of liquid foam in decom-

position layer, kg/s m2

MV mass-average molecular weight of the
polymer vapor in the decomposition layer,
kg/mole

n exponent in Arrhenius expression for vapor-
ization rate

p0 atmospheric pressure, Pa
pC pressure on the inside surface of the coating,

Pa
pD pressure in the decomposition layer, Pa
pM pressure in the liquid metal, Pa
pS pressure on the outside surface of the coat-

ing, Pa
P Peclet number in the coating undercut
qM heat flux from the surface of the liquid

metal into the decomposition layer,
W/m2

rV mass rate of polymer vaporization per unit
area at the metal surface, kg/s m2

R universal gas constant
u mold filling speed, m/s
vG filter velocity of the gas diffusing through

the coating, m/s
x Cartesian coordinate, m

xV mass fraction of polymer liquid vaporized in
the decomposition layer

y Cartesian coordinate, m

Greek symbols

b nondimensional number in analysis of gas
diffusion through the sand

d width of the coating undercut, m
d0 nominal cell size of the expanded foam

beads, m
dD maximum width of the coating undercut, m
dL thickness of residual polymer liquid that

accumulates along the undercut, m
eA internal energy per unit mass of the air in

the decomposition layer, J/kg
eC energy per unit mass required to collapse the

foam, J/kg
eD internal energy per unit mass of the liquid

foam in the decomposition layer, J/kg
eL internal energy per unit mass of the polymer

liquid in the decomposition layer, J/kg
eP energy per unit mass required to ‘‘melt’’ the

foam, J/kg
ePD energy per unit mass required to decompose

the foam pattern, J/kg
eV internal energy per unit mass of the polymer

vapor in the decomposition layer, J/kg
h temperature of the liquid foam, K
h0 initial temperature of the pattern and sand,

K
hC collapse temperature of the foam, K
hD average temperature in the decomposition

layer, K
hL average temperature of the residual polymer

liquid along the undercut, K
hM temperature on the metal surface, K
hP nominal melting temperature of the foam

pattern, K
jC gas permeability of the coating, m2

jS gas permeability of the sand, m2

kD Peclet number in the decomposition layer
kU modified Peclet number in the coating

undercut
lG viscosity of the gas escaping through the

coating, Pa s
qA partial density of the air in the decomposi-

tion layer, kg/m3

q0A density of the air in the pattern at its initial
pressure and temperature, kg/m3

qB boundary density of the foam pattern, kg/m3

qD average density of the liquid foam in the
decomposition layer, kg/m3
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qF partial density of the polymer in the foam,
kg/m3

qG average density of the gas in the undercut,
kg/m3

qL partial density of the polymer liquid in the
decomposition layer, kg/m3

qP total density of the foam pattern, kg/m3

qS density of the polymer in the foam, kg/m3

qV partial density of the polymer vapor in the
decomposition layer, kg/m3

u volume fraction of air in the foam
uS porosity of the sand
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to cast a variety of alloys, the present paper is restricted
to aluminum.

One of the important technical challenges in lost foam
casting is to understand the connection between the
mechanics of foam decomposition during mold filling
and the formation of excessive internal porosity or folds
(a pair of poorly fused metal surfaces contaminated by
oxide and/or carbon residue) in the final cast product
[3]. Such anomalies can occur when products of foam
decomposition do not fully escape from the mold cavity
before the casting solidifies. If such physical understand-
ing can be embodied in a mathematical model of foam
decomposition and mold filling, it should be possible to
predict conditions that lead to such fill-related anomalies
and then correct (or at least reduce) them by redesigning
the product or reengineering the process before any tool-
ing is made. This should help to eliminate much of the
costly trial and error that is now so prevalent during pro-
cess development in lost foam casting.
1.2. The mold filling problem

Unlike traditional casting processes where metal is
poured directly into an empty mold cavity, the move-
ment of liquid metal through a lost foam mold is deter-
mined more by the rate of foam decomposition ahead of
the flow front than it is by the dynamics of metal flow
behind it. The metal simply moves into the mold volume
originally occupied by the foam pattern as fast as the
foam decomposes and the products of that decomposi-
tion are pushed out of the way. Up to now, most at-
tempts at modeling the mold filling process in lost
foam casting have replaced the complex mechanics of
foam decomposition by a simplified empirical boundary
condition at the metal/foam interface, and then solved
the metal flow problem by more-or-less conventional
means. Tsai and Chen [4], Hirt and Barkhudarov [5],
and Liu et al. [6] assign a constant heat transfer coeffi-
cient to the interface between the metal and the foam,
and then compute a flow-front velocity by relating the
resulting heat flux to a constant foam decomposition en-
ergy. Wang et al. [7] and Gurdogan et al. [8] both assume
that the flow-front velocity is a linear function of the me-
tal temperature and pressure, with empirical coefficients
obtained from one-dimensional filling experiments.
Shivkumar [9] simply assigns the metal velocity directly,
again based on one-dimensional filling data. Even if one
of these approaches were successful in describing the
flow of liquid metal in the mold cavity, though, it would
still be unable to shed much light on the physical mech-
anisms that cause fill-related porosity or folds simply
because the mechanics of foam decomposition are ob-
scured by empiricism. To truly get at the cause of such
anomalies, foam decomposition must be modeled as a
separate physical process.

1.3. Foam decomposition

As more and more experimental observations have
been made of mold filling in lost foam casting, it has
become increasingly clear that depending on the local
conditions inside the mold, the foam can decompose
by more than one physical mechanism [10]. This paper
is concerned with just one such mechanism—one we call
contact mode. In contact mode the liquid metal makes
direct contact with the foam pattern, decomposing it pri-
marily by ablation. Contact mode is by far the most pre-
valent mode of foam decomposition in lost foam
casting, and the one—at least for low melting point
alloys—that occurs before any other sets in.

In this paper, we construct a model for heat conduc-
tion in the narrow layer separating the liquid metal and
the foam pattern, including the convection of liquid
foam out of the receding pattern and partial vaporiza-
tion of the polymer liquid at the metal surface. We also
propose a separate collapse mechanism for the foam
cells on the boundary of the pattern, which leads to a
new concept we call the coating undercut. The rate of
propagation of the coating undercut along the boundary
of the pattern determines how fast the mold fills. The
calculated filling speeds predicted by this model not only
compare very well with measurements for aluminum al-
loys, but they also help to explain the reasons for several
unusual experimental observations that until now have
not been clearly understood.
2. The decomposition layer

2.1. Structure and composition

Consider liquid metal in direct contact with a poly-
mer foam pattern, separated by only a narrow layer
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containing liquid and gas from the decomposing foam.
The foam decomposes at a steady velocity u, as depicted
in Fig. 1, with the decomposition products escaping lat-
erally along the layer towards the coating on each side.
We assume the liquid metal has a locally planar front
with the origin of coordinates moving with the metal
and the x-axis pointing into the foam. We neglect all
temperature gradients parallel to the surface of the metal
compared with the much steeper gradients directed to-
wards the foam. Let hM denote the uniform temperature
on the surface of the metal and h0 the initial temperature
of the pattern. Even though most foam materials are
glassy polymers without a well-defined melting tempera-
ture, they usually soften and then liquefy over a fairly
narrow temperature range [11]. Hence we assume the
foam becomes a liquid at the plane x = lD, where the
pattern temperature reaches a nominal melting tempera-
ture designated by hP. The interval 0 < x < lD between
the liquid metal and the solid foam is called the decom-

position layer.
Although the foam pattern may contain residual

blowing agents left over from the molding process, we
assume that by the time the casting is poured the volume
of such gases is negligible, so that the foam is made up
entirely of solid polymer and air. Let u denote the vol-
ume fraction of air in the foam, qS the mass density of
the polymer material, and q0

A the density of air at the ini-
tial pattern temperature h0 and atmospheric pressure p0.
Then the total density qP of the foam pattern is given by
x
liquid
metal

foam
pattern

Dl

u

0θ

Mθ
Pθ

decomposition
layer

Dm

Fig. 1. Schematic illustration of the decomposition layer
between the liquid metal and the receding foam.
qP ¼ uq0
A þ ð1� uÞqS ¼ uq0

A þ qF; ð2:1Þ

where qF = (1 � u)qS is the partial density of the poly-
mer in the foam.

During controlled foam pyrolysis experiments in
which a foam bar was passed through an electrically
heated metal strip at velocities typical of mold filling
speeds in lost foam casting, Molibog and Littleton [12]
observed ‘‘frothy liquid’’ squeezing out between the me-
tal strip and the impinging foam. (Their experiment is
described in more detail later in this section.) Based on
these observations, we assume that the gas and liquid
in the decomposition layer do not separate into distinct
regions, but instead combine to form a homogeneous li-
quid foam. To minimize surface energy, the small liquid
fraction in this foam (typically less than 1%) collects in
Plateau borders at junctions of three or more cells in
the foam structure [13]. As these slender liquid filaments
contact the surface of the liquid metal, they vaporize,
creating additional polymer vapor that combines with
the gas already in the decomposition layer.

Let xV denote the mass fraction of the original poly-
mer that vaporizes as the liquid foam passes through the
decomposition layer on its way to the coating. Molibog
and Littleton [14] observed very little degradation in the
residual liquid they collected in their foam pyrolysis
experiments, and so it is likely that the liquid polymer
undergoes most of its depolymerization just before it
vaporizes. For simplicity we assume that both reactions
occur simultaneously at the metal surface x = 0, and
that the rate of vaporization rV per unit area on that sur-
face is specified by an Arrhenius relationship in the form

rV ¼ rVðhM; xVÞ ¼ a expð�E=RhMÞð1� xVÞn; ð2:2Þ

where R denotes the universal gas constant and the
values of a, E, and n depend on the foam material.
The constant E, called the activation energy, measures
the reaction�s sensitivity to temperature. As the metal
temperature increases, the rate of vaporization also in-
creases. The exponent n measures the sensitivity of
vaporization rate to the amount of available liquid. As
xV increases, the liquid foam contains less liquid and
the rate of vaporization decreases. From the definition
of xV it follows that

xVqFu ¼ rVðhM; xVÞ. ð2:3Þ

Unless otherwise indicated, all temperatures and pres-
sures in this paper are taken to be absolute quantities.

Let pD denote the pressure in the decomposition
layer, which we assume is independent of x. Let MV de-
note the mass-average molecular weight of the polymer
vapor and hD the average temperature of the liquid
foam. Then if we assume that the air and polymer vapor
behave as ideal gases, it is not difficult to show that the
average mass density qD in the decomposition layer is
given by
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qD ¼ qP

ð1� xVÞð1� uÞ þ xVqF

RhD
pDMV

þ u
p0hD
pDh0

. ð2:4Þ

Because of the small volume fraction of liquid, the first
term in the denominator of (2.4) is usually negligible
compared with the other two.

Now let qA, qV, and qL denote the partial densities of
air, polymer vapor, and polymer liquid, respectively, in
the liquid foam. Then since the mass fractions of air
and polymer in the decomposition layer must be the
same as those in the solid foam, we have

qA=qD ¼ uq0
A=qP;

qV=qD ¼ xVqF=qP;

qL=qD ¼ ð1� xVÞqF=qP.

ð2:5Þ

Let eA, eV, and eL denote the internal energies per unit
mass of the air, polymer vapor, and polymer liquid,
respectively. Then the average internal energy eD in the
decomposition layer is given by

qDeD ¼ qAeA þ qVeV þ qLeL. ð2:6Þ

Further, let cA, cV, and cL denote the corresponding spe-
cific heats per unit mass of the air, polymer vapor, and
polymer liquid, respectively. We assume that each is
approximately constant over the temperature range in
the decomposition layer. Then the average specific heat
cD in the decomposition layer is given by

qDcD ¼ qAcA þ qVcV þ qLcL. ð2:7Þ

With the help of (2.5), the two expressions (2.6) and
(2.7), may be written in the more convenient forms

qPeD ¼ uq0
AeA þ xVqFeV þ ð1� xVÞqFeL; ð2:8Þ

qPcD ¼ uq0
AcA þ xVqFcV þ ð1� xVÞqFcL. ð2:9Þ

For later reference we also define the energy per unit
mass eP required to heat the foam from its initial temper-
ature h0 to its ‘‘melting’’ temperature hP. If we let cS de-
note the specific heat per unit mass of the solid polymer
and HM its latent heat of fusion, then it follows that

qPeP ¼ ðuq0
AcA þ qFcSÞðhP � h0Þ þ qFHM. ð2:10Þ

Since most foam materials are amorphous polymers,
their latent heat of fusion is usually negligible. In partic-
ular, both Tseng and Askeland [15] and Mehta et al. [11]
detected no significant melting energy for polystyrene
foam.

2.2. Energy balance

We assume that as the liquid metal advances through
the foam, all material originally in the foam enters the
decomposition layer at x = lD and then exits laterally
towards the coating. In other words, no air or polymer
vapor escapes ahead of the metal through any open
porosity that may be present in foam. This means that
for a steady metal velocity u, the normal mass flux mD

entering the decomposition layer at x = lD is simply
qPu (Fig. 1). The lateral movement of this material to-
wards the coating causes mD to decrease with x until it
vanishes entirely at the metal surface x = 0. For simplic-
ity, we assume that mD is linear in x, so that

mD ¼ qPux=lD. ð2:11Þ

Let kD denote the bulk thermal conductivity of the li-
quid foam in the decomposition layer and let h(x) desig-
nate its temperature distribution. Then the energy
balance equation in the decomposition layer is given by

kD
o2h
ox2

þ qPcDux
lD

� �
oh
ox

¼ 0; 0 < x < lD. ð2:12Þ

There is no explicit source term in (2.12) because of the
earlier assumption that all polymer degradation and
vaporization takes place at the metal surface x = 0.
There is also no lateral convection term because the tem-
perature gradients parallel to the metal surface are neg-
ligible. The appropriate boundary conditions are

hð0Þ ¼ hM; hðlDÞ ¼ hP; �kD
oh
ox

ðlDÞ ¼ qPePu.

ð2:13Þ

The last of these ensures that the heat flux at x = lD is
sufficient to melt the foam at the prescribed rate. The
solution of (2.12) that satisfies the first two conditions
in (2.13) is

h ¼ hM � erfðkDx=lDÞ
erfðkDÞ

ðhM � hPÞ; ð2:14Þ

where kD is a Peclet number for the decomposition layer
defined by

k2D ¼ qPcDulD
2kD

. ð2:15Þ

Together with (2.14), the third condition in (2.13) pro-
vides an independent equation for determining kD,
namely,

hM � hP ¼ p1=2ðeP=cDÞkDek
2
DerfðkDÞ. ð2:16Þ

The average temperature hD in the decomposition layer
may be calculated by integrating (2.14) across the
decomposition layer. With the help of (2.16), the result is

hD ¼ 1

lD

Z lD

0

hðxÞdx ¼ hP þ ðeP=cDÞðek
2
D � 1Þ. ð2:17Þ

Since both hM and hD depend solely on the Peclet num-
ber kD, it is possible, at least in principle, to eliminate kD
between (2.16) and (2.17) and express hD as a function of
the metal temperature alone. This means that the aver-
age temperature in the decomposition layer, like the Pec-
let number, is independent of the filling speed u.

The total heat flux qM from the surface of the liquid
metal is
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and Littleton�s [14] experimental data. Solid lines and symbols
are derived from (2.2) and (2.3) using the constants in (2.20).
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derived from the vaporization equation (2.2) using the con-
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qM ¼ �kD
oh
ox

ð0Þ þ rVðHV þ HDÞ

¼ qPePue
k2D þ xVqFuðHV þ HDÞ; ð2:18Þ

where HD and HV denote the heats of degradation and
vaporization per unit mass of the polymer, respectively.
With the help of (2.17), this expression may be written in
the alternative form

ePD ¼ qM
qPu

¼ eP þ cDðhD � hPÞ þ xV
qF

qP

ðHV þ HDÞ.

ð2:19Þ

The quantity ePD, the total energy required to remove
the foam from the path of the liquid metal, is called the
pattern decomposition energy. The first term in (2.19)
represents the energy required to melt the foam. The
next represents the energy required to heat the liquid
foam to the average temperature of the decomposition
layer. The last term is the energy required to degrade
and vaporize the portion of the polymer liquid
that comes into contact with the surface of the liquid
metal.

2.3. Selected results for polystyrene foam

Before developing the foam decomposition model
any further, we pause and consider how well the results
obtained so far agree with available experimental data
for expanded polystyrene foam. Molibog and Littleton
[12,14] developed a foam pyrolysis apparatus to simulate
the interaction between a foam pattern and liquid metal
in lost foam casting. The apparatus pushes a long foam
bar through an electrically heated metal strip either at a
constant velocity or with a constant applied force. The
metal strip is maintained at a constant temperature by
regulating its power input. After the foam bar is pyro-
lyzed by the heated metal strip, the mass of residual
foam and congealed liquid is subtracted from the mass
of the original bar to determine the amount of gas gen-
erated as the foam decomposes. In this way it is possible
to measure the gas fraction xV and then calculate the
rate of vaporization rV from (2.3).

Molibog and Littleton [14] pyrolyzed three lost foam
grade polystyrene foam materials at nominal velocities
of 1, 3, and 4.5 cm/s. Fig. 2 shows a plot of gas fraction
measurements (open symbols) as a function of heater
temperature for one of those materials (StyroChem
T170B with a nominal density of 25 kg/m3) at all three
speeds. Each open symbol on these graphs represents a
measurement from a single foam bar. The corresponding
rates of vaporization calculated from (2.3) are plotted in
Fig. 3.

To determine the three kinetic parameters in (2.2)
from this data, we first take the logarithm of (2.2) and
perform linear regression analysis on the data in Fig. 3
to determine values for the three constants that give
the best fit to the empirical equation (2.2). The results
are

a ¼ 13; 000 kg=m2 s; E ¼ 90 kJ=mole; n ¼ 1.9.

ð2:20Þ

The activation energy of 90 kJ/mole is consistent with
values reported by Sands and Shivkumar [16] for a sim-
ilar material. After substituting these constants into (2.2)
and solving the mass balance equation (2.3), we can
determine the gas fraction xV and the average gas gener-
ation rate rV for given values of temperature and speed.
These calculated results are also plotted in Figs. 2 and 3.
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The discrepancies between the empirical relationship
(2.2) and the experimental data are comparable with
the variation in the data.

Table 1 lists typical properties for polystyrene foam.
We assume that the polymer degradation is nearly com-
plete at vaporization, so that the molecular weight of the
gas is that of styrene monomer. With these properties,
we can solve (2.16) for kD and (2.3) for xV for given val-
ues of the filling speed and metal temperature and then
substitute these two results into (2.18) to calculate the
heat flux. The results are plotted in Fig. 4, together with
the corresponding measurements from Molibog and Lit-
tleton�s [14] experiments. Since these measurements are
independent of the gas fraction data recorded earlier,
they serve as a check on the validity of the model. The
predicted fluxes fall short of the measurements by about
Table 1
Material properties of polystyrene foam

Property Symbol Value Unit

Nominal foam density qF 25 kg/m3

Foam boundary density qB 50 kg/m3

Polymer density qS 800 kg/m3

Nominal cell size d0 50 lm
Thermal conductivity kD 0.04 W/m K
Melting temperature hP 150 �C
Melting energy HM 0 J/g
Degradation energy HD 670 J/g
Vaporization energy HV 360 J/g
Specific heat of solid cS 1.5 J/g K
Specific heat of liquid cL 2.2 J/g K
Specific heat of vapor cV 2.2 J/g K
Molecular weight of vapor MV 104 g/mole
Viscosity of gas lG 2 · 10�5 Pa s
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10%. This may be due to some additional heating of the
foam as it passed over the top and bottom edges of the
metal heater, something that was not included in
the analysis.

Fig. 5 shows how the Peclet number kD varies as a
function of temperature in these experiments. It is inter-
esting to note that kD is nearly constant over the entire
temperature range. According to (2.15), then, the thick-
ness of the decomposition layer lD varies almost inver-
sely with the filling speed u.

Fig. 6 displays the temperature solution (2.14) corre-
sponding to hM = 650 �C, a typical value for aluminum
alloys. The concave shape of the curve is caused by the
convection of the cooler decomposition products from
the decomposing pattern towards the hotter liquid
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metal. In general, convection depresses the average
decomposition layer temperature (2.17) by about 50 �C.

Since the velocity u is a known quantity in these
experiments, it is possible to use (2.9) and (2.15), to-
gether with computed values of kD and measured values
of xV, to calculate the thickness of the decomposition
layer. Fig. 7 plots the results as a function of tempera-
ture and speed. According to these calculations, the
decomposition layer is about 150 lm thick at typical fill-
ing speeds (1–2 cm/s), which is certainly too thin to ob-
serve with the naked eye. This is consistent with Butler
and Pope�s [17] early observations of mold filling
through a glass window, where they reported no discern-
able gap between the liquid metal and the unmelted
foam. Later experiments by Tseng and Askeland [18]
and Walling and Dantzig [19] revealed the same thing.
Interestingly, the thickness of the decomposition layer
is the only result so far that is affected by the conductiv-
ity kD of the liquid foam.

2.4. Viscous resistance

Although up to now we have not considered any lat-
eral variation of the pressure pD in the decomposition
layer, a finite pressure gradient must of course exist to
overcome viscous resistance of the liquid foam as it
flows towards the coating in the narrow gap between
the liquid metal and the unmelted foam. This gradient
diminishes the available pressure at the coating for driv-
ing gas diffusion. In their foam pyrolysis experiments,
Molibog and Littleton [14] measured the load exerted
on the end of the foam bar as a function of speed and
heater temperature. After correcting for the friction
and other incidental forces unrelated to contact with
the heater, they converted this load to an average pres-
sure exerted by the foam bar on the surface of the heated
metal strip. Measured pressures were less than 1 kPa for
a heater width of 1 cm and a foam speed of 1 cm/s. This
corresponds to about 4 cm of aluminum head height,
which is less than 10% of the typical metal pressures at
the flow front and comparable with the normal fluctua-
tion in the metal head as it is poured. Although it is pos-
sible to extend the model to include the viscous
resistance of the foam, it turns out to have a second-
order effect on the main results, and so for now we sim-
ply neglect it.

Regardless of how small the viscous resistance of the
liquid foam, the only way the metal has to support the
required pressure gradient is by changing the shape of
its flow front so that surface tension produces a nonuni-
form pressure in the decomposition layer. In extreme
cases, this can result in an entirely different mechanism
of foam decomposition. Such behavior, however, is out-
side the scope of the present paper. In what follows, we
neglect surface tension entirely and assume that the pres-
sure pD in the decomposition layer is equal to the local
pressure pM in the liquid metal.
3. Gas diffusion

3.1. Coating

Since the coating and the sand are both permeable to
gas diffusion, the pressure from the liquid metal inside
the mold cavity forces the gas generated by the decom-
posing foam through the porous coating and into the
surrounding sand. In principle, the escaping gas encoun-
ters diffusive resistance in both the coating and the sand.
The rate at which the coating and sand allow gas to es-
cape from the mold cavity determines how fast the mold
fills. We consider the coating first.

Consider a length lC of exposed coating near the flow
front that is open to gas diffusion, bounded in front by
the point where unmelted foam still adheres to the coat-
ing and behind by the point where either liquid metal or
liquid polystyrene blocks the surface of the coating to
gas diffusion. In quasi-steady mold filling, this open sec-
tion of coating moves with the flow front at velocity u.
Consider Cartesian coordinates moving with the flow
front, such that the origin is centered in the section of ex-
posed coating and the y-axis points into the sand (Fig.
8). We assume that relative to these coordinates the pres-
sure in both the coating and the sand is independent of
time. Let dC represent the coating thickness and jC its
gas permeability. Table 2 lists typical properties for
coatings used in aluminum casting. Although many dif-
ferent types of coatings are used in aluminum casting,
most of those in current use have properties very similar
those in Table 2.

We assume that the mixture of air and polymer vapor
has a constant viscosity lG and that it behaves as an
ideal gas. If we further assume that lC � dC (which



Fig. 8. Local geometry and coordinates for gas diffusion
through the coating and into the sand.

Table 2
Material properties for the sand and coating

Property Symbol Value Unit

Sand Permeability jS 100 lm2

Porosity uS 0.4

Coating Permeability jC 0.02 lm2

Thickness dC 0.2 mm

4140 M.R. Barone, D.A. Caulk / International Journal of Heat and Mass Transfer 48 (2005) 4132–4149
should become evident in the next section), then the gas
diffusion is predominately one-dimensional. At the rela-
tively slow rates of diffusion found in aluminum casting,
Darcy�s law is valid, and so the filter velocity vG of the
escaping gas is given by [20]

vG ¼ jC

lGdC

p2C � p2S
2pC

; ð3:1Þ

where pC is the gas pressure on the inside of the coating
and pS is the pressure in the sand just outside the coat-
ing. This equation relates the rate of gas diffusion to
the pressure drop across the coating. To determine pS,
we must consider how gas disperses in the sand.

3.2. Sand

We assume that the sand extends indefinitely in all
directions from the pattern and let p0 denote the uniform
pressure in the sand at infinity. Let jS denote the perme-
ability of the sand and uS its porosity. Table 2 lists typ-
ical properties for silica sand. Just as in the coating, we
assume that the gas is ideal and that it diffuses through
the sand according to Darcy�s law. The equation govern-
ing the gas pressure in the sand is [20]

o2ðp2Þ
ox2

þ o2ðp2Þ
oy2

¼ 2uSlG

jS

u
op
ox

� �
. ð3:2Þ
If pS � p0 � p0, then (3.2) may be approximated by

o2ðp2Þ
ox2

þ o2ðp2Þ
oy2

¼ uSlGu
jSp0

oðp2Þ
ox

. ð3:3Þ

From Darcy�s law, the filter velocity on the surface of
the sand is given by

� jS

lG

op
oy

ðx; 0Þ ¼ vG; � 1

2
lC < x <

1

2
lC; ð3:4Þ

which, for small changes in pressure, may be approxi-
mated by

� jS

2lGp0

oðp2Þ
oy

ðx; 0Þ ¼ vG; � 1

2
lC < x <

1

2
lC. ð3:5Þ

Everywhere else on y = 0 the pressure gradient vanishes.
The problem stated in (3.3) and (3.5) is completely

analogous to transient heat conduction from a uniform
heat source on a moving strip in an infinite medium, as
long as the square of the pressure is identified with tem-
perature. The solution for the surface pressure, from
Carslaw and Jaeger [21], is given by

p2S � p20 ¼
4vGp20
puSu

Z bð2x=lCþ1Þ

bð2x=lC�1Þ
enK0ðjnjÞdn; ð3:6Þ

where K0 is the zeroth-order modified Bessel function of
the second kind and

b ¼ uSlGulC
4jSp0

. ð3:7Þ

For all cases of practical interest b � 1, so that the sur-
face pressure reaches its maximum value very near
x = 0. Therefore to an excellent approximation

p2S � p20 6
4vGp20
puSu

Z b

�b
enK0ðjnjÞdn

¼ 4vGp20
puSu

bðeb þ e�bÞK0ðbÞ

� � 8vGp20
puSu

b lnðbÞ. ð3:8Þ

Dividing this expression by (3.1), we can estimate the ra-
tio of the pressure drop in the sand to that across the
coating, namely,

pS � p0
pC � pS

6
1

p
jClC
jSdC

ln
4jSp0

uSlGulC

� �
; ð3:9Þ

where we have assumed that the overall pressure drop
from the metal to the sand is small compared with the
absolute pressure in the sand at infinity. For the typical
sand and coating properties listed in Table 2, a filling
speed of 1 cm/s, and lC < 1 cm of exposed coating,
(3.9) gives

pS � p0
pC � pS

6 0.04. ð3:10Þ



Fig. 9. A simple model for gas escaping from the decomposi-
tion layer.
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Hence the error in neglecting the diffusion resistance of
the sand is less than 4%. If we further consider that a sig-
nificant fraction of the polymer vapor condenses soon
after it enters the sand, as reported by Fu et al. [22],
the error is even less. This result is supported by Sands
and Shivkumar [23], who found that varying sand fine-
ness in the range AFS 20-80 had no effect on filling speed
in foam strips. Note from (3.9), however, that the error
is proportional to the coating permeability. In iron cast-
ing, where the coating permeability is more than ten
times higher than for aluminum, the pressure drop in
the sand is no longer negligible.

If we neglect the diffusive resistance of the sand, then
pS = p0 and (3.1) becomes

vG ¼ jC

lGdC

p2M � p20
2pM

; ð3:11Þ

where we have set pC = pM since the viscous resistance of
the foam has been neglected. Eq. (3.11) determines how
fast gas diffuses through the coating. How much gas es-
capes in any given time depends on how much of the
coating is exposed to gas diffusion.

3.3. A simple model for the escaping gas

Perhaps the simplest model for describing how gas
escapes from the decomposition layer is illustrated in
Fig. 9. This picture, or one very much like it, has been
reproduced by nearly every author over nearly four dec-
ades of research in lost foam casting [6,9,10,19,24–26].
The basic assumption is that gas escapes from the mold
cavity through a length of exposed coating equal to the
separation between the liquid metal and the unmelted
foam. In other words, lC = lD. To balance the mass in
the decomposition layer, the filling speed u and thickness
lD adjust in opposite directions (since their product,
according to the heat conduction solution of the previ-
ous section, must stay approximately constant) until
gas is generated in the decomposition layer at the same
rate as it escapes. When the metal pressure rises, more
gas escapes through the coating, causing lD to decrease
and u to increase. Qualitatively, this trend is certainly
consistent with experience: filling speeds do increase
with metal pressure. The problem comes in calculating
the actual speeds.

Suppose we assume that the liquid foam remains
homogeneous until it reaches the coating, where the
gas separates from the liquid. The gas diffuses through
the coating and into the sand while the liquid, which re-
mains inside the cavity, is eventually overtaken by the
advancing liquid metal. In this case, a simple mass bal-
ance over the decomposition layer yields

2qDlDvG ¼ qPud; ð3:12Þ

where d is the thickness of the pattern. Together with the
heat conduction analysis of the previous section, (3.11)
and (3.12) determine the filling speed u and the thickness
of the decomposition layer lD.

As reasonable as it may seem, it turns out that (3.12)
leads to unacceptable quantitative results, and this by
such a wide margin that even with a modest allowance
for uncertainty in material properties, the discrepancies
are inescapable. Littleton et al. [27] were the first to raise
concern over the inability of the simple model in Fig. 9
to eliminate all the gas generated at normal filling
speeds. To see the consequence of (3.12) in the context
of the present model, we use the foam properties in Ta-
ble 1 together with coating properties from Table 2.
Then for specified values of pressure, metal temperature,
and pattern thickness, we can solve the seven Eqs. (2.3),
(2.4), (2.15)–(2.17), (3.11) and (3.12) for the seven un-
knowns xV, lD, qD, hD, kD, vG, and u.

Fig. 10 shows the results for filling speed as a func-
tion of metal pressure (measured in meters of aluminum)
for a metal temperature of 650 �C and four different val-
ues of pattern thickness. There are at least two problems
with these results. First, the predicted filling speeds are
too slow by an order of magnitude. In aluminum cast-
ing, filling speeds are typically 1–2 cm/s. To expose en-
ough coating surface for the gas to escape according
to (3.12), the decomposition layer has to widen to the
point where heat conduction cannot support the ob-
served filling speeds. Second, according to these results
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filling speed is strongly affected by section thickness,
with thicker sections filling considerably slower than
thinner ones. This result follows directly from the mass
balance (3.12). As long as kD is roughly constant, then
(2.15) and (3.12) together imply that u2d is also approx-
imately constant. This inverse square-root dependence
of filling speed on thickness is clearly evident in Fig.
10. This conclusion, however, is contrary to experimen-
tal results reported by Miller [28] that show little or no
dependence of filling speed on pattern thickness.

It is clear, then, that the simple model in Fig. 9 is
inadequate. To understand what is wrong, we must take
a closer look at the special way that foam decomposes
near the coating.
4. The coating undercut

4.1. Motivation

In lost foam casting, the liquid metal replaces the vol-
ume originally occupied by the foam pattern only after
the material in the pattern breaks down and the gas
and liquid products move out of the way. Since most
foam materials are about 97% air by volume, air is the
major substance impeding the forward movement of
the liquid metal. But the air by itself would do a poor
job of restraining the metal if it were not contained in
the honeycombed cellular structure of the individual
foam beads that are fused together in the molding pro-
cess to make the pattern. Until the polymer itself be-
comes liquid, the closed cells in the foam keep the air
from escaping through the coating and into the sur-
rounding sand. As soon as the polymer melts, the air
in these cells is free to flow to and through the coating,
seeking the lower pressure in the sand. As long as the
only path to the coating is through the decomposition
layer, though, this motion cannot occur without an
additional expenditure of energy above that required
simply to melt the foam. The decomposition layer is
bounded on one side by liquid metal several hundred de-
grees hotter than the melting temperature of the foam,
and so the average temperature of the material in the
decomposition layer must rise well above the melting
temperature of the polymer, which causes a significant
fraction of the polymer liquid to degrade and vaporize
before it ever gets to the coating. These three compo-
nents of the pattern decomposition energy (melting,
heating, and polymer degradation/vaporization) are
each expressed by one of the three terms in (2.19). Using
the properties of polystyrene foam listed in Table 1 to-
gether with the temperature solution in Section 2, it is
easy to show that the energy eP required just to melt
the foam represents less than 20% of the total energy re-
quired to remove the pattern from the path of the liquid
metal.

If there were another way for the air in the foam to
reach the coating without first entering the decomposi-
tion layer, the decomposition energy would be much
lower. For example, if the pattern has a high inter-
bead porosity, some or all of the air can reach the
coating by diffusing between the beads in the unmelted
pattern and escaping through the coating ahead of the
metal front [26,27]. In this case, the beads nearest the
metal simply collapse upon melting, the air they con-
tain diffuses through the permeable pattern structure,
and the small volume of polymer liquid that remains
is simply swept aside. Although such rapid foam col-
lapse is usually undesirable, it can be prevented for
the most part by careful molding of the foam pattern.
But even in cases when the molded foam is sound en-
ough to prevent such a collapse, something very much
like it can still occur in the foam cells immediately
adjacent to the coating.

Consider the schematic illustration in Fig. 11. When
the polymer cells melt in the interior of the pattern, their
contents must enter the decomposition layer and flow
parallel to the liquid metal before the gas can escape
through the coating. But on the boundary of the pattern,
a melting foam cell is able to expel its air directly into the
coating without any need for it to enter the decomposi-
tion layer. The coating presents almost no diffusion
resistance to the small quantity of air that escapes when
a single boundary cell collapses. After one boundary cell
collapses, liquid foam from the decomposition layer fills
the resulting void, heating the next cell, and causing it to
collapse as well. This process continues until a narrow
undercut forms between the unmelted foam and the coat-
ing. The length of this undercut, which determines how
much of the coating is exposed to gas diffusion, is con-
trolled by a balance between the heat flux into the foam
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Fig. 11. Schematic illustration of foam collapse in the cells adjacent to the coating, leading to the formation of the undercut.

Fig. 12. Idealized geometry of the proposed coating undercut.
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and the rate of energy expended in collapsing the foam
at its leading edge.

To our knowledge, the concept of a coating undercut
is an entirely new proposition in lost foam casting.
While conditions certainly exist to support its formation
and there appears to be scattered experimental evidence
to confirm its existence, for the time being we must re-
gard it only as a reasonable hypothesis. In keeping with
this level of uncertainty, therefore, we propose a rela-
tively basic model for the undercut that does not extend
beyond our current level of understanding.

4.2. Energy balance

Consider steady mold filling with the idealized under-
cut geometry illustrated in Fig. 12. Position the origin of
coordinates at the leading edge of the undercut with the
x-axis pointing in the opposite direction of flow. Let lC
measure the length of the undercut from its leading edge
back to the surface of the liquid metal. Relative to these
coordinates, both the coating and the pattern move with
positive velocity u. We assume that the liquid foam en-
ters the undercut at x = lC with the same composition
and average temperature as in the decomposition layer.
As the liquid foam moves down the undercut, it loses gas
through the coating on one side and sheds liquid on the
other as it shears against the unmelted foam. For sim-
plicity, we assume these two losses occur in the same
proportion, so that the composition of the remaining li-
quid foam is unchanged. And we assume that the lateral
heat convection created by both mass fluxes is sufficient
to keep the main gas/liquid mixture from cooling by lat-
eral conduction to either the coating or the foam. The
gas loses heat to the coating as it diffuses through it
on one side of the undercut and the rejected liquid first
heats and then melts some of the foam on the other.
As the foam melts along the undercut, the undercut
widens with increasing x and the amount of liquid accu-
mulated on the foam increases as well. Polymer liquid
does not deposit on the inside of the coating along the
undercut because the coating is not yet warm enough
for the liquid to wet its surface [29].

Let h(x) denote the temperature of the liquid foam in
the undercut and d(x) its width. Further, let dD = d(lC)
denote the width of the undercut at the point where it
joins the decomposition layer. The convection of energy
into the undercut from the decomposition layer is given
by

qPueDðd=2� dDÞ; ð4:1Þ

where d represents the pattern thickness, as before. If we
assume that gas escapes through the coating uniformly
along the undercut, then the convection of energy down
the undercut decreases linearly with x.
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As gas escapes through the coating, it removes energy
from the undercut. The energy removed per unit length
is given by

u
lC

ðd=2� dDÞxVqFeV þ ud
2lC

uq0
AeA. ð4:2Þ

The corresponding energy per unit length lost as the
liquid deposits on the foam is

u
lC

ðd=2� dDÞð1� xVÞqFeL. ð4:3Þ

From (4.1)–(4.3), the energy balance in the undercut
may be expressed as

kD
o

ox
d
oh
ox

� �
þ o

ox
x
lC

ðd=2� dDÞqPueD

� �

� u
lC

ðd=2� dDÞqF½xVeV þ ð1� xVÞeL�

� ud
2lC

uq0
AeA ¼ 0. ð4:4Þ

With the help of (2.8) and (2.9), this simplifies to

kD
o

ox
d
oh
ox

� �
þ x
lC

ðd=2� dDÞqPcDu
oh
ox

� u
lC

dDuq
0
AeA ¼ 0. ð4:5Þ

To solve this equation, we need to supply an expression
for d(x), which must come from a separate energy bal-
ance for the residual liquid that deposits on the foam.

Let dL(x) denote the thickness of residual liquid that
accumulates between the pattern and the undercut. It is
made up of liquid rejected from the undercut as well as
additional liquid created as the foam melts and the
undercut widens. From the above assumptions, we
have

dLðxÞ ¼ ð1� uÞ ðd=2� dDÞð1� xVÞ
x
lC

þ d� dð0Þ
� �

.

ð4:6Þ

The first term in the brackets represents the liquid re-
jected from the undercut. The last two represent the
additional liquid created by melting the foam. Now let
hL(x) denote the average temperature of the residual li-
quid at the point x. Then if we neglect longitudinal con-
duction (the liquid is probably not smoothly connected
anyway) and use (4.3), the energy balance in the residual
liquid may be expressed as

u
lC

ðd=2� dDÞð1� xVÞqFeLðhÞ ¼ qSu
o

ox
½dLeLðhLÞ�. ð4:7Þ

For simplicity, we have taken the densities of the liquid
and solid polymer to be equal. With (4.6), this equation
reduces to
ðd=2� dDÞð1� xVÞcLðh� hLÞ
1

lC

¼ eLðhLÞ
od
ox

þ dLcL
ð1� uÞ

ohL
ox

. ð4:8Þ

Suppose again for simplicity we set

hL ¼ 1

2
ðhþ hPÞ. ð4:9Þ

Then (4.8) becomes

ðd=2� dDÞð1� xVÞðh� hPÞ
1

lC

¼ 2
eLðhLÞ
cL

od
ox

þ dL
ð1� uÞ

oh
ox

. ð4:10Þ

The temperature boundary conditions in the undercut
are

hð0Þ ¼ hP; hðlCÞ ¼ hD. ð4:11Þ

Since the foam cannot collapse on a scale smaller than
the size of an individual foam cell, we assume that the
undercut narrows to the nominal cell size d0 of the foam
at x = 0. The heat flux at this point must be sufficient to
sustain a rate of foam collapse equal to the filling speed.
These two conditions are expressed by

dð0Þ ¼ d0; kD
oh
ox

ð0Þ ¼ uqBeC; ð4:12Þ

where eC is the collapse energy of the foam pattern per
unit mass and qB is the boundary density of the pattern.
Here a distinct surface density is introduced for the foam
since the density of molded foam is usually higher near
the boundary [30]. Even though in general the collapse
energy eC of the foam is smaller than its melting energy
eP, we still assume that the corresponding temperatures
are approximately the same.
4.3. Solving the energy balance equations

Before we solve the coupled, nonlinear differential
equations (4.5) and (4.10) subject to the boundary con-
ditions (4.11) and (4.12), it is convenient first to intro-
duce the following set of nondimensional variables:

x̂ ¼ x=lC; d̂ ¼ 2d=d; d̂L ¼ 2dL=d;

ĥ ¼ cDðh� hPÞ=eP. ð4:13Þ

In terms of these variables, (4.5) and (4.10) may be writ-
ten as

ðd̂ĥ0Þ0 þ Px̂ð1� d̂DÞĥ
0 � P d̂Du

q0
AeA
qPeP

¼ 0; ð4:14Þ

ð1� d̂DÞð1� xVÞĥ ¼ d̂
0ðĥþ 2Þ þ d̂Lĥ

0

1� u
; ð4:15Þ



0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0
Nondimensional Distance

N
on

di
m

en
si

on
al

 T
em

pe
ra

tu
re

0.0

0.1

0.2

0.3

0.4

N
on

di
m

en
si

on
al

 W
id

th

Width

Temperature

Fig. 13. Nondimensional undercut temperature and width as a
function of distance from the leading edge. The heavy lines
represent the numerical solution of the coupled, nonlinear
equations (4.14) and (4.15) for representative values xV = 0.3
and P = 100, while the lighter lines represent the corresponding
solution of the approximate equations (4.18) and (4.19).

M.R. Barone, D.A. Caulk / International Journal of Heat and Mass Transfer 48 (2005) 4132–4149 4145
where a prime denotes o=ox̂ and

P ¼ qPcDulC
kD

. ð4:16Þ

From (4.11)–(4.13) and (4.16) the corresponding nondi-
mensional boundary conditions are

ĥð0Þ ¼ 0; ĥð1Þ ¼ ĥD; d̂ð0Þ ¼ d̂0;

ĥ
0ð0Þ ¼ P

qBeC
qPeP

. ð4:17Þ

In principle, (4.14) and (4.15) may be solved by numer-
ical integration, starting from x̂ ¼ 0 and iterating on the
choice of u and d̂D until the computed solution at x̂ ¼ 1
matches the prescribed values of ĥ and d̂.

The darker lines in Fig. 13 graph the solution of
(4.14) and (4.15) for the foam properties listed in Table
1 and the representative values xV = 0.3 and P = 100.
The temperature ĥ stays virtually uniform over the entire
length of the undercut, except very near x = 0, where it
drops precipitously to the melting temperature of the
foam. This is a result of strong longitudinal convection
together with the assumption of negligible lateral con-
duction losses. The undercut width is very nearly linear
in x̂, except near x̂ ¼ 0, where it must level off to a zero
slope to be compatible with (4.15) and the boundary
conditions in (4.17).

It turns out that over a wide range of material and
process parameters, the solution to the coupled, nonlin-
ear system (4.14) and (4.15) may be approximated quite
well by the solution to the decoupled, linear system

d̂0ĥ
00 þ P x̂ð1� d̂DÞĥ

0 ¼ 0; ð4:18Þ

ð1� d̂DÞð1� xVÞĥD ¼ d̂
0ðĥD þ 2Þ. ð4:19Þ

The solution of (4.19) is

d̂ðxÞ ¼ d̂0 þ ðd̂D � d̂0Þx̂; ð4:20Þ
where

d̂D ¼ ð1� xVÞĥD þ d̂0ðĥD þ 2Þ
ð2� xVÞĥD þ 2

. ð4:21Þ

The solution of (4.18) is

ĥ ¼ erfðkUx̂Þ
erfðkUÞ

ĥD; ð4:22Þ

where

k2U ¼ 1� d̂D

2d̂0
P ¼ d=2� dD

d0

qPcDulC
2kD

. ð4:23Þ

The solution (4.20) and (4.22) is shown by the lighter
lines in Fig. 13. Very little accuracy is lost in the approx-
imation. For simplicity in what follows, we use only the
approximate solution.

Combining (4.17) and (4.22), we obtain

ĥ
0ð0Þ ¼ qPcDulC

kD

qBeC
qPeP

¼ 2ffiffiffi
p

p kU
erfðkUÞ

ĥD. ð4:24Þ
Since kU is usually large enough to make the approxima-
tion erf(kU) = 1, (4.24) may be expressed as

u ¼ kDĥD
qBcD

eP
eC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd=2� dDÞqPcDu

pkDd0lC

s
. ð4:25Þ

This is very nearly the desired result. All that remains is
to derive an expression for the undercut length lC. For
that we need to consider a mass balance for the escaping
gas.

4.4. Mass balance

Let qG denote the density of the gas in the undercut.
Then if we require that all the gas generated in the
decomposition layer escape through the length of coat-
ing exposed by the undercut, we have

1

2
duuq0

A þ ðd=2� dDÞuxVqF ¼ qGvGlC; ð4:26Þ

where vG is given by (3.11) and from the ideal gas law

qG ¼ uq0
A þ xVqF

u
p0h
pMh0

þ xVqF

Rh
pMMV

. ð4:27Þ

We neglect all viscous losses in the undercut compared
with the pressure drop across the coating and assume
that the pressure in the undercut is uniform and equal
to pM. The gas temperature in the undercut is nearly uni-
form until just before x = 0, and so we assume that qG is
approximately constant and given by (4.27) with h = hD.
Since the volume fraction of liquid in the decomposition
layer/undercut is even less than the tiny solid fraction in
the original foam, it is a very good approximation to ne-
glect the first term in the denominator of (2.4). Then
with (4.27) we have, approximately,
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qD

qP

¼ qG

uq0
A þ xVqF

. ð4:28Þ

Since the amount of air released by the formation of the
undercut is small compared with the total amount of air
and vapor coming from the rest of the pattern,

uq0
AdD � ðxVqF þ uq0

AÞðd=2� dDÞ ð4:29Þ

and (4.26) becomes, approximately,

ðd=2� dDÞuqP ¼ qDvGlC; ð4:30Þ

where we have also used (4.28). Finally, Eqs. (4.30) and
(4.25) combine to yield

u ¼ 1

qBeC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qDcDkDvG

pd0

s
ðhD � hPÞ. ð4:31Þ

The entire solution for the filling speed u, gas fraction
xV, average temperature hD, average density qD, average
specific heat cD, and filter velocity vG follows from the
simultaneous solution of (2.3), (2.9), (2.16), (2.17),
(3.11) and (4.31).

So far nothing has been said about the fate of the
residual liquid that collects along the inside of the under-
cut. According to (4.6), the amount of this liquid in-
creases as the foam approaches the surface of the
liquid metal. While the details of the juncture between
the decomposition layer and the undercut are still un-
clear, it is likely that broken sections of this liquid are
swept towards the coating by the liquid foam rushing
out of the decomposition layer. The coating should
readily absorb the liquid (Fig. 12) as long as the escaping
gas ahead of this point has heated the coating sufficiently
for it to wet the polymer liquid [29]. The analysis of heat
transfer from the gas to the coating is relatively straight-
forward and we do not consider it further here.
5. Filling results

5.1. Qualitative trends

Three important qualitative observations can now be
made based on the results derived so far. First note from
(4.31) that the filling speed is independent of the section

thickness. Although somewhat contrary to intuition, this
conclusion is confirmed by Miller [28], as well as a grow-
ing body of mold filling data from more recent real-time
X-ray experiments at General Motors. Ordinarily, one
would expect the lower surface-area-to-volume ratio in
thicker parts to impede the elimination of decomposi-
tion products from the mold cavity, leading to lower fill-
ing speeds. The reason that this does not happen is
because the undercut lengthens with part thickness,
allowing it to accommodate a greater volume of escap-
ing gas.
The second observation is that according to (4.31) the
filling speed u is inversely proportional to the pattern
collapse energy eC. Suppose we assume that the foam
collapses at the temperature hC and that its collapse
energy is given by

qPeC ¼ ðuq0
AcA þ qFcSÞðhC � h0Þ. ð5:1Þ

Polystyrene foam collapses at about 120 �C [11], less
than 100� above the initial pattern temperature, which
should be equal to the sand temperature by the time
the casting is poured. If the sand temperature rises just
10�, the collapse energy drops by more than 10%. It fol-
lows that filling speed is sensitive to even small changes in

sand temperature. This result, too, seems to contradict
intuition. According to (2.19), raising the sand tempera-
ture as much as 30 �C reduces the decomposition energy
(2.19) by only 5%. Yet when Buesch et al. [31] raised the
sand temperature from 26 to 60 �C, they observed filling
speeds increase by about 50%. The present model pre-
dicts the same thing.

The third observation is that, according to (4.31), fill-
ing speed is inversely proportional to the surface density
of the foam. The foam molding process usually produces
a higher density near the pattern boundary where the
beads are in direct contact with the hot mold surface.
Typically, the pattern�s boundary density is about twice
as large as its nominal density [30]. Patterns cut from
board stock, on the other hand, would not have this
higher-density outer skin. Consequently, filling speeds

in cut foam should be significantly higher than in molded

foam. Again, this result is borne out by experiments.
Liu et al. [32] measured filling speeds in cut foam that
were almost double those in molded foam. Bennett
et al. [33] made a similar observation. Until now, no
one has offered a plausible explanation for these results.

All three of these results depend on the existence of
the coating undercut, and none has ever been explained
before. But these are just qualitative trends. The real test
of the model is how well it predicts actual filling speeds.

5.2. Filling speeds

To calculate filling speeds with the undercut model,
we need to specify two more properties of the foam:
the boundary density qB and the nominal cell size d0.
Strictly speaking, both are determined more by the foam
molding process than they are by the properties of the
bead itself. Cell size depends on the amount of bead
expansion and the boundary density on parameters of
the molding steam cycle. For purposes of this paper,
we assume a boundary density twice as large as the nom-
inal density of the foam and a cell size of 50 lm (Table
1).

Fig. 14 displays the calculated filling speed for a poly-
styrene pattern as a function of pressure (measured in
meters of aluminum) at a metal surface temperature of
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650 �C, using the material properties listed in Tables 1
and 2. The calculated speeds are now in line with
experience. Most recent studies involving mica-based
coatings on molded foam report filling speeds in the 1–
2 cm/s range [33–35]. Filling speed increases with pres-
sure as expected, but slightly faster than the square root
dependence indicated in (4.31) because qD is not con-
stant. Less gas is generated at faster filling speeds (Fig.
2), which increases the liquid foam density qD at the
same time that higher pressures increase the gas velocity
vG through the coating.

Perhaps more interesting is the dependence of filling
speed on metal temperature, shown in Fig. 15 for a con-
stant aluminum head of 0.5 m. It turns out that metal
temperature has almost no effect on filling speed. Even
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Fig. 15. Filling speed as a function of metal temperature for a
polystyrene foam and a metal pressure corresponding to 0.5 m
of aluminum, based on the undercut model illustrated in Fig.
12.
though higher metal temperatures increase the heat flux
into the foam, they also generate more gas and the two
trends very nearly balance each other out. Many exper-
imenters have reported little or no dependence of filling
speed on metal temperature [10,31,36,37], consistent
with these results.

5.3. Undercut dimensions

Besides the encouraging behavioral inferences from
the model, we cannot cite any published accounts
where a coating undercut has been detected explicitly.
Nevertheless, it is still important that the length and
breadth of the undercut fall within reasonable bounds
for the model to be plausible. Figs. 16 and 17 plot the
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Fig. 17. Nondimensional undercut length as a function of
metal temperature for a polystyrene foam and a metal pressure
corresponding to 0.5 m of aluminum.
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nondimensional undercut length 2lC/d in polystyrene
foam as a function of metal pressure and temperature,
respectively. The length of the undercut is equal to
roughly half the thickness of the part. It decreases with
pressure and lengthens with increasing metal
temperature.

The maximum width of the undercut varies to a less
significant degree, penetrating about 15% of the part
thickness from each side. This dimension, about 1 mm
in typical parts, is much larger than the thickness of
the decomposition layer and should be readily detectable
with appropriate instrumentation. At these widths, any
viscous pressure losses down the length of the undercut
should be negligible, which justifies our assumption of a
uniform filter velocity vG along the undercut.
6. Discussion

This paper presents a mathematical model of foam
ablation for lost foam casting of aluminum that cor-
rectly accounts for many experimental observations that
up to now have had no satisfactory explanation. Gov-
erning equations are developed for heat conduction
and polymer vaporization in the narrow decomposition

layer between the liquid metal and the foam pattern,
and for the flow of foam decomposition products
through a proposed coating undercut at the pattern
boundary where gas diffuses through the coating and
into the sand.

It has been generally accepted for nearly four decades
now that the gas generated by the decomposing pattern
escapes through a length of exposed coating approxi-
mately equal to the separation between the liquid metal
and the unmelted foam. Recent foam pyrolysis data
[12,14], however, has allowed us to test that hypothesis
here for the first time, resulting in predicted filling speeds
a full order of magnitude smaller than measured values.
Furthermore, it leads to a strong dependence of filling
speed on pattern thickness—with thicker parts filling
considerably slower than thinner ones—something that
is also not observed in experiments.

The entirely new model for gas evacuation proposed
in this paper is based on a reasonable hypothesis for the
unique way that foam cells decompose along the bound-
ary of the pattern. Not only does this model predict cor-
rect filling speeds for a polystyrene pattern coated with a
mica-based refractory, but it also accounts for a number
of seemingly counterintuitive experimental observations
that have never been explained before: filling speeds are
independent of pattern thickness, strongly dependent on
sand temperature, weakly dependent on metal tempera-
ture, and much faster in cut foam compared with
molded foam.

Although ablation is only one means by which foam
decomposes in lost foam casting, it is perhaps the most
important mechanism. The present model is a key ingre-
dient in an analysis of metal filling in lost foam casting
of aluminum, an important step towards understanding
the ways that foam decomposition can contribute to fill
related casting defects.
Acknowledgements

The authors would like to extend their thanks to
Taras Molibog, a former Ph.D. student at the University
of Alabama at Birmingham, for sharing preliminary data
from his foam pyrolysis experiments and for many useful
and stimulating discussions on foam decomposition. We
are also indebted to David Goettsch and Jerry Bare-
ndreght of General Motors Powertrain Group for their
valuable work in real-time X-ray imaging of mold filling.

References

[1] T.R. Smith, Method of Casting, US Patent No. 3,157,924,
1964.

[2] J.R. Brown, The lost foam casting process, Met. Mater. 8
(1992) 550–555.

[3] Q. Zhao, T.W. Gustafson, M. Hoover, M.C. Flemings,
Fold formation in the lost foam aluminum process, in:
S.K. Das (Ed.), Aluminum 2003, TMS, Warrendale, 2003,
pp. 121–132.

[4] H.L. Tsai, T.S. Chen, Modeling of evaporative pattern
process, Part I: Metal flow and heat transfer during the
filling stage, AFS Trans. 96 (1988) 881–890.

[5] C.W. Hirt, M.R. Barkhudarov, Lost foam casting simu-
lation with defect prediction, in: B.G. Thomas, C. Becker-
mann (Eds.), Modeling of Welding, Casting and Advanced
Solidification Processes VIII, TMS, Warrendale, 1998, pp.
51–57.

[6] Y. Liu, S.I. Bakhtiyarov, R.A. Overfelt, Numerical mod-
eling and experimental verification of mold filling and
evolved gas pressure in lost foam casting, J. Mater. Sci. 37
(2002) 2997–3003.

[7] C.M. Wang, A.J. Paul, W.W. Fincher, O.J. Huey, Com-
putational fluid flow and heat transfer during the EPC
process, AFS Trans. 101 (1993) 897–904.

[8] O. Gurdogan, H. Huang, H.U. Akay, W.W. Fincher, V.E.
Wilson, Mold-filling analysis for ductile iron lost foam
castings, AFS Trans. 104 (1996) 451–459.

[9] S. Shivkumar, Modelling of temperature losses in liquid
metal during casting formation in expendable pattern
casting process, Mater. Sci. Technol. 10 (1994) 986–992.

[10] X. Liu, C.W. Ramsay, D.R. Askeland, Study on mold
filling control mechanisms in the EPC process, AFS Trans.
102 (1994) 903–914.

[11] S. Mehta, S. Biederman, S. Shivkumar, Thermal degrada-
tion of foamed polystyrene, J. Mater. Sci. 30 (1995) 2944–
2949.

[12] T.V. Molibog, H. Littleton, Experimental simulation of
pattern degradation in lost foam, AFS Trans. 109 (2001)
1523–1554.

[13] D. Weaire, S. Hutzler, The Physics of Foams, Oxford
University Press, New York, 1999, pp. 6–8.



M.R. Barone, D.A. Caulk / International Journal of Heat and Mass Transfer 48 (2005) 4132–4149 4149
[14] T.V. Molibog, H. Littleton, Degradation of expanded
polystyrene patterns, AFS Trans. 110 (2002) 1483–1496.

[15] C.H.E. Tseng, D.R. Askeland, Thermal and chemical
analysis of the foam, Refractory coating and sand in the
EPC process, AFS Trans. 100 (1992) 509–518.

[16] M. Sands, S. Shivkumar, EPS molecular weight and foam
density effects in the lost foam process, J. Mater. Sci. 38
(2003) 2233–2239.

[17] R.D. Butler, R.J. Pope, Some factors involved in full
mould casting with unbonded sand moulds, Brit. Foun-
dryman 4 (1964) 178–191.

[18] C.-H. Tseng, D.R. Askeland, A study of selected process
parameters for the evaporative pattern casting process,
AFS Trans. 99 (1991) 455–464.

[19] R.P. Walling, J.A. Dantzig, Mechanisms if mold filling in
the EPC process, AFS Trans. 102 (1994) 849–854.

[20] A.E. Scheidegger, The Physics of Flow through Porous
Media, third ed., University of Toronto Press, Toronto,
1974, pp. 102–107.

[21] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids,
second ed., Clarendon Press, Oxford, 1959, p. 269.

[22] J. Fu, H.L. Tsai, D.R. Askeland, Transport of foam
decomposition products into the sand in the lost foam
casting process, AFS Trans. 104 (1996) 263–270.

[23] M. Sands, S. Shivkumar, Influence of coating thickness
and sand fineness on mold filling in the lost foam casting
process, J. Mater. Sci. 38 (2003) 667–673.

[24] H.B. Dieter, A.J. Paoli, Sand without binder for making
full mold castings, AFS Trans. 75 (1967) 147–160.

[25] M.H. Warner, B.A. Miller, H.E. Littleton, Pattern pyro-
lysis defect reduction in lost foam castings, AFS Trans. 106
(1998) 777–785.

[26] J. Rossacci, S. Shivkumar, Influence of EPS bead fusion on
pattern degradation and casting formation in the lost foam
process, J. Mater. Sci. 38 (2003) 2321–2330.
[27] H.E. Littleton, T. Molibog, W. Sun, The role of pattern
permeability in lost foam casting, AFS Trans. 111 (2003)
1265–1277.

[28] B.A. Miller, Pattern pyrolysis defect reduction in lost foam
castings, Masters Thesis, University of Alabama, Birming-
ham, Alabama, 1996.

[29] Y. Sun, H.L. Tsai, D.R. Askeland, Investigation of wetting
and wicking properties of refractory coating in the EPC
process, AFS Trans. 100 (1992) 297–308.

[30] M. Hill, A.E. Vrieze, T.L. Moody, C.W. Ramsay, D.R.
Askeland, Effect of metal velocity on defect formation in
Al LFCs, AFS Trans. 106 (1998) 365–374.

[31] A. Buesch, C. Carney, T. Moody, C. Wang, C.W. Ramsay,
D.R. Askeland, Influence of sand temperature on forma-
tion of pyrolysis defects in aluminum lost foam castings,
AFS Trans. 108 (2000) 615–621.

[32] J. Liu, C.W. Ramsey, D.R. Askeland, Effects of foam
density and density gradients on metal fill in the LFC
process, AFS Trans. 105 (1997) 435–442.

[33] S. Bennett, T. Moody, A. Vrieze, M. Jackson, D.R.
Askeland, C.W. Ramsay, Pyrolysis defects in aluminum
lost foam casting, AFS Trans. 107 (1999) 795–803.

[34] W.L. Sun, H.E. Littleton, C.E. Bates, Real-time X-ray
investigations on lost foam mold filling, AFS Trans. 110
(2002) 1347–1356.

[35] E.N. Pan, G.L. Sheu, The filling phenomena of lost foam
cast irons and aluminum alloys, AFS Trans. 111 (2003)
1255–1263.

[36] S. Shivkumar, Casting characteristics of aluminum alloys
in the EPC process, AFS Trans. 101 (1993) 513–
518.

[37] C. Wang, C.W. Ramsay, D.R. Askeland, Processing
variable significance on filling thin plates in the LFC
process—the staggered, nested factorial experiment, AFS
Trans. 105 (1997) 427–434.


	A foam ablation model for lost foam casting of aluminum
	Introduction
	Lost foam casting
	The mold filling problem
	Foam decomposition

	The decomposition layer
	Structure and composition
	Energy balance
	Selected results for polystyrene foam
	Viscous resistance

	Gas diffusion
	Coating
	Sand
	A simple model for the escaping gas

	The coating undercut
	Motivation
	Energy balance
	Solving the energy balance equations
	Mass balance

	Filling results
	Qualitative trends
	Filling speeds
	Undercut dimensions

	Discussion
	Acknowledgements
	References


